Enhancement of the Load Capacity of High-Energy Laser Monocrystalline Silicon Reflector Based on the Selection of Surface Lattice Defects

Author:

Zhou Gang,Tian Ye,Xue Shuai,Zhou Guangqi,Song Ci,Zhou Lin,Tie Guipeng,Shi Feng,Shen Yongxiang,Zhu Zhe

Abstract

Various defects during the manufacture of a high-energy laser monocrystalline silicon reflector will increase the energy absorption rate of the substrate and worsen the optical properties. Micron-scale or larger manufacturing defects have been inhibited by mechanism study and improvement in technology, but the substrate performance still fails to satisfy the application demand. We focus on the changes in the optical properties affected by nanoscale and Angstrom lattice defects on the surface of monocrystalline silicon and acquire the expected high reflectivity and low absorptivity through deterministic control of its defect state. Based on the first principles, the band structures and optical properties of two typical defect models of monocrystalline silicon—namely, atomic vacancy and lattice dislocation—were analyzed by molecular dynamics simulations. The results showed that the reflectivity of the vacancy defect was higher than that of the dislocation defect, and elevating the proportion of the vacancy defect could improve the performance of the monocrystalline silicon in infrared (IR) band. To verify the results of simulations, the combined Ion Beam Figuring (IBF) and Chemical Mechanical Polishing (CMP) technologies were applied to introduce the vacancy defect and reduce the thickness of defect layer. After the process, the reflectivity of the monocrystalline silicon element increased by 5% in the visible light band and by 12% in the IR band. Finally, in the photothermal absorption test at 1064 nm, the photothermal absorption of the element was reduced by 80.5%. Intense laser usability on the monocrystalline silicon surface was achieved, and the effectiveness and feasibility of deterministic regulation of optical properties were verified. This concept will be widely applied in future high-energy laser system and X-ray reflectors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3