Effects of Cooling Rate during Quenching and Tempering Conditions on Microstructures and Mechanical Properties of Carbon Steel Flange

Author:

Jo Haeju,Kang Moonseok,Park Geon-WooORCID,Kim Byung-Jun,Choi Chang Yong,Park Hee Sang,Shin Sunmi,Lee WookjinORCID,Ahn Yong-SikORCID,Jeon Jong Bae

Abstract

This study investigated the mechanical properties of steel in flanges, with the goal of obtaining high strength and high toughness. Quenching was applied alone or in combination with tempering at one of nine combinations of three temperatures TTEM and durations tTEM. Cooling rates at various flange locations during quenching were first estimated using finite element method simulation, and the three locations were selected for mechanical testing in terms of cooling rate. Microstructures of specimens were observed at each condition. Tensile test and hardness test were performed at room temperature, and a Charpy impact test was performed at −46 °C. All specimens had a multiphase microstructure composed of matrix and secondary phases, which decomposed under the various tempering conditions. Decrease in cooling rate (CR) during quenching caused reduction in hardness and strength but did not affect low-temperature toughness significantly. After tempering, hardness and strength were reduced and low-temperature toughness was increased. Microstructures and mechanical properties under the various tempering conditions and CRs during quenching were discussed. This work was based on the properties directly obtained from flanges under industrial processes and is thus expected to be useful for practical applications.

Funder

Small and Medium Business Administration

Korea Evaluation Institute of Industrial Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3