Bayesian Inference for Multiple Datasets

Author:

Retkute Renata1ORCID,Thurston William2ORCID,Gilligan Christopher A.1ORCID

Affiliation:

1. Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK

2. Met Office, Fitzroy Road, Exeter EX1 3PB, UK

Abstract

Estimating parameters for multiple datasets can be time consuming, especially when the number of datasets is large. One solution is to sample from multiple datasets simultaneously using Bayesian methods such as adaptive multiple importance sampling (AMIS). Here, we use the AMIS approach to fit a von Mises distribution to multiple datasets for wind trajectories derived from a Lagrangian Particle Dispersion Model driven from 3D meteorological data. A posterior distribution of parameters can help to characterise the uncertainties in wind trajectories in a form that can be used as inputs for predictive models of wind-dispersed insect pests and the pathogens of agricultural crops for use in evaluating risk and in planning mitigation actions. The novelty of our study is in testing the performance of the method on a very large number of datasets (>11,000). Our results show that AMIS can significantly improve the efficiency of parameter inference for multiple datasets.

Funder

UK Foreign, Commonwealth and Development Office

Bill and Melinda Gates Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3