Power-over-Fiber LPIT for Voltage and Current Measurements in the Medium Voltage Distribution Networks

Author:

Bassan Fabio R.,Rosolem Joao B.ORCID,Floridia ClaudioORCID,Aires Bruno N.,Peres Rodrigo,Aprea Javier F.,Nascimento Carlos Alexandre M.ORCID,Fruett Fabiano

Abstract

In this work, we present the design, laboratory tests, and the field trial results of a power-over-fiber (PoF) low power instrument transformer (LPIT) for voltage and current measurements in the medium voltage distribution networks. The new proposed design of this power-over-fiber LPIT aims to overcome the drawbacks presented by the previous technologies, such as the continuous operation (measuring and data transmission) for a wide current range conducted in the medium voltage transmission lines, damage due to lightning strikes, accuracy dependency on vibration, position and temperatures. The LPIT attends the accuracy criteria of IEC 61869-10 and IEC 61869-11 in terms of current and voltage accuracy and it attends the practical criteria adopted by Utilities companies including voltage measurements without removing the coating of the covered conductors. The PoF based LPIT was developed to be applied at 11.9 kV, 13.8 kV, and 23.0 kV phase-to-phase nominal voltages, and in two current ranges 1.25–30 A and 37.5–900 A. The digital data transmission of current, voltage, and temperature from the sensing unit to the processing unit uses a special synchronism technique and it is performed by two 62.5 µm multimode fibers in 850 nm. The optical powering in 976 nm is also performed by one 62.5 µm multimode fiber from the processing unit to the sensor unit. We presented all details of the sensor design and its laboratory characterization in terms of accuracy and temperature correction. We also presented the results of field tests of the sensor made in two different conditions: in a standard distribution network and an experimental hybrid fiber/power distribution network. We believe that these studies aim to incorporate optical fiber and devices, digital technologies, communications systems in electrical systems driving their evolution.

Funder

Financiadora de Estudos e Projetos

Agência Nacional de Energia Elétrica

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3