The Source of Fracture-Cave Mud Fillings of the Ordovician Yingshan Formation and Its Paleokarst Environment in the Northern Slope of the Tazhong Uplift, Tarim Basin, China: Based on Petrology and Geochemical Analysis

Author:

Dan Yong,Nie Guoquan,Liang Bin,Zhang Qingyu,Li Jingrui,Dong Hongqi,Ji Shaocong

Abstract

The karst fracture-cave oil and gas reservoirs of the Yingshan Formation in the northern slope of the Tazhong Uplift are well developed and have achieved good exploration results. However, the karst fracture-cave near the top of the Yingshan Formation is basically filled with mud fillings, which seriously affect the reservoir property, and the source and filling environment of the mud fillings have been unclear. Through the petrological and geochemical analysis of the fracture-cave fillings system in the typical wells of the Yingshan Formation, it has been found that (1) the fracture-cave fillings are mainly composed of a mixture of the bedrock dissolution dissociation particles, clay minerals, and calcite cements of the Yingshan Formation, and the content of each component in the different wells or in the cave interval is quite different. (2) Rare earth element analysis shows that the rare earth distribution pattern of the fracture-cave fillings is similar to the bottom marlstone of the Lianglitage Formation, indicating that the fracture-cave fillings should be mainly derived from the early seawater of the deposition during the Lianglitage Formation. (3) Cathodoluminescence, trace element analysis, and previous studies have shown that the formation and fillings of the fractures and caves mainly occurred in the hypergene period, which had the characteristics of an oxidized environment, and that there are two filling effects. First, the limestone of the Yingshan Formation experienced the formation of karst caves due to meteoric freshwater dissolution during the exposure period, and the limestone of the Yingshan Formation was dissolved, resulting in some insoluble clay and residual limestone gravel particles brought into the cave by the meteoric freshwater for filling. Second, the seawater transgression also played an important role during the deposition of the Lianglitage Formation. The clay content in the seawater was high during the early deposition of the Lianglitage Formation, which led to the clay being brought into the caves by the seawater during the deposition of the Lianglitage Formation for further filling; at the same time, calcite deposited into the caves with the clay. The above research promotes the study of the formation mechanism of the karst cave reservoir in the Yingshan Formation and has important theoretical significance for the guiding of the next oil and gas exploration in this area.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference52 articles.

1. China Karstology;Yuan,1993

2. Paleokarst;James,1988

3. Ordovician palaeokarst landform in Ordos Basin and gas enrichment characteristics;Xia;Oil Gas Geol.,1999

4. Paleocave carbonate reservoirs: Origins, burialdepth modififications, spatial complexity and reservoir implications;Loucks;AAPG Bull.,1999

5. Palaeohydrogeological control of palaeokarst macro-porosity genesis during a major sea-level lowstand: Danian of the Urbasa–Andia plateau, Navarra, North Spain

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3