Abstract
Orthopyroxene, an important phase in mantle-derived rocks, has become a powerful tool to unravel mantle nature and magma processes. However, the applications have been hindered by the lag in the development of analytical techniques, such as shortage of reference materials. Orthopyroxene grains derived from an ultramafic intrusion at the Mogok metamorphic belt (Myanmar) were evaluated for the potential use of orthopyroxene as a reference material for in-situ microanalysis. Approximately 20 g of 0.5–3 mm pure orthopyroxene grains were separated under binocular microscope and analyzed using EPMA, LA-ICPMS, and bulk analytical methods (XRD, XRF, and solution-ICPMS) for major and trace elements at four institutions. Eleven core-to-rim profiles carried out using EPMA and twelve core-to-rim profiles determined using LA-ICPMS suggest that MK-1 orthopyroxene grains are sufficiently homogeneous, with RSD < ±2% (1σ) for major elements (Mg, Si, and Fe) and RSD < ±10% (1σ) for trace elements (Na, Al, Ca, Ti, Cr, Co, Zn, Ni, Mn, Sc, and V). In addition, the composition of MK-1 orthopyroxene was also measured by XRF and solution-ICPMS measurements in two different laboratories, to compare with the results measured using EPMA and LA-ICPMS. The results indicated a good agreement with RSE < ±2% (1σ) for major elements and RSE < ±5% (1σ) for most trace elements, except for Na (±9.73%) and Ti (±6.80%). In an overall assessment of these data, MK-1 orthopyroxene can be considered as a reference material for in-situ microanalysis, which would provide solid trace elements data for a better understanding of mantle source and magmatic evolution.
Funder
National Natural Science Foundation of China
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献