Factors Affecting the Compressive Strength of Geopolymers: A Review

Author:

Castillo HengelsORCID,Collado Humberto,Droguett Thomas,Sánchez Sebastián,Vesely Mario,Garrido Pamela,Palma Sergio

Abstract

Geopolymers are created by mixing a source of aluminosilicates, which can be natural or by-products from other industries, with an alkaline solution. These materials based on by-products from other industries have proven to be a less polluting alternative for concrete production than ordinary Portland cement (OPC). Geopolymers offer many advantages over OPC, such as excellent mechanical strength, increased durability, thermal resistance, and excellent stability in acidic and alkaline environments. Within these properties, mechanical strength, more specifically compressive strength, is the most important property for analyzing geopolymers as a construction material. For this reason, this study compiled information on the different variables that affect the compressive strength of geopolymers, such as Si/Al ratio, curing temperature and time, type and concentration of alkaline activator, water content, and the effect of impurities. From the information collected, it can be mentioned that geopolymers with Si/Al ratios between 1.5 and 2.0 obtained the highest compressive strengths for the different cases. On the other hand, high moderate temperatures (between 80 and 90 °C) induced higher compressive strengths in geopolymers, because the temperature favors the geopolymerization process. Moreover, longer curing times helped to obtain higher compressive strengths for all the cases analyzed. Furthermore, it was found that the most common practice is the use of sodium hydroxide combined with sodium silicate to obtain geopolymers with good mechanical strength, where the optimum SS/NaOH ratio depends on the source of aluminosilicates to be used. Generally speaking, it was observed that higher water contents lead to a decrease in compressive strength. The presence of calcium was found to be favorable in controlled proportions as it increases the compressive strength of geopolymers, on the other hand, impurities such as heavy metals have a negative effect on the compressive strength of geopolymers.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3