Comparative Study on Refractory Gold Concentrate Kinetics and Mechanisms by Pilot Scale Batch and Continuous Bio-Oxidation

Author:

Huang Zhong-Sheng,Yang Tian-Zu

Abstract

Most studies conducted have focused on the pulp density, Fe3+ concentration and sulfuric acid concentration, etc., of bio-oxidation, and few have reported on the influence of different bio-oxidation methods on kinetics. In this study, a comparative investigation on refractory gold concentrate by batch and continuous bio-oxidation was conducted, with the purpose of revealing the kinetics influence. The results showed that improving the removal rates of the gold-bearing pyrite (FeS2) and arsenopyrite (FeAsS) yielded the best results for increasing gold recovery. The removal rates of S, Fe and relative gold recovery linearly increased when compared to the second-order equation increase of the As removal rate in both batch and continuous bio-oxidation processes. The removal kinetics of S and Fe by continuous bio-oxidation was 12.02% and 12.17% per 24 h day, approximately 86.64% and 51.18% higher than batch bio-oxidation, respectively. The higher removal kinetics of continuous bio-oxidation resulted from a stepwise increase in microbe growth, a larger population and higher dissolved Fe3+ and H2SO4 concentration compared to a linear increase by batch bio-oxidation. The cyanidation gold recovery was as high as 94.71% after seven days of continuous bio-oxidation, with the gold concentrate sulfur removal rates of 83.83%; similar results will be achieved after 13 days by batch bio-oxidation. The 16sRNA sequencing showed seven more microbe cultures in the initial residue than Acid Mine Drainage (AMD) at genus level. The quantitative real-time Polymerase Chain Reaction (PCR) test showed the four main functional average microbe populations of Acidithiobacillus, Leptospirillum, Ferroplasma and Sulfobacillus in continuous bio-oxidation residue as 1.08 × 103 higher than in solution. The multi-microbes used in this study have higher bio-oxidation activity and performance in a highly acidic environment since some archaea co-exist and co-contribute.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3