Fe, Mn and 238U Accumulations in Phragmites australis Naturally Growing at the Mill Tailings Pond; Iron Plaque Formation Possibly Related to Root-Endophytic Bacteria Producing Siderophores

Author:

Nakamoto Yukihiro,Doyama Kohei,Haruma Toshikatsu,Lu Xingyan,Tanaka Kazuya,Kozai Naofumi,Fukuyama Kenjin,Fukushima Shigeru,Ohara Yoshiyuki,Yamaji Keiko

Abstract

Mine drainage is a vital water problem in the mining industry worldwide because of the heavy metal elements and low pH. Rhizofiltration using wetland plants is an appropriate method to remove heavy metals from the water via accumulation in the rhizosphere. Phragmites australis is one of the candidate plants for this method because of metal accumulation, forming iron plaque around the roots. At the study site, which was the mill tailings pond in the Ningyo-toge uranium mine, P. australis has been naturally growing since 1998. The results showed that P. australis accumulated Fe, Mn, and 238U in the nodal roots without/with iron plaque compared with other plant tissues. Among the 837 bacterial colonies isolated from nodal roots, 88.6% showed siderophore production activities. Considering iron plaque formation around P. australis roots, we hypothesized that microbial siderophores might influence iron plaque formation because bacterial siderophores have catechol-like functional groups. The complex of catechol or other phenolics with Fe was precipitated due to the networks between Fe and phenolic derivatives. The experiment using bacterial products of root endophytes, such as Pseudomonas spp. and Rhizobium spp., showed precipitation with Fe ions, and we confirmed that several Pseudomonas spp. and Rhizobium spp. produced unidentified phenolic compounds. In conclusion, root-endophytic bacteria such as Pseudomonas spp. and Rhizobium spp., isolated from metal-accumulating roots of P. australis, might influence iron plaque formation as the metal accumulation site. Iron plaque formation is related to tolerance in P. australis, and Pseudomonas spp. and Rhizobium spp. might indirectly contribute to tolerance. Although there are many issues to be resolved in this research, we hope that the fundamental analysis of plant-microbe interactions would be helpful for phytoremediation at mine sites.

Funder

KAKENHI

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3