Thermal Decomposition of Brominated Butyl Rubber

Author:

Zhang Wei,Zang Yang,Lu Yanli,Lin Weisheng,Zhao Shengyun,Xiong JinpingORCID

Abstract

The thermal decomposition of brominated butyl rubber under air atmosphere was investigated by thermogravimetry (TG) and derivative thermogravimetry (DTG) at various heating rates. The kinetic parameters were evaluated by TG and the isoconversional method developed by Ozawa. One prominent decomposition stage was observed in the DTG curves at high heating rates, while an additional small peak was observed at low heating rates. The apparent activation energy determined using the TG method ranged from 219.31 to 228.13 kJ·mol−1 at various heating rates. The non-isothermal degradation was found to be a first-order reaction, and the activation energy, as determined by the isoconversional method, increased with an increase in mass loss. The kinetic data suggest that brominated butyl rubber has excellent thermal stability. This study can indirectly aid in improving rubber pyrolysis methods and in enhancing the heat resistance of materials.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3