Nonlinear Optical Saturable Absorption Properties of 2D VP Nanosheets and Application as SA in a Passively Q-Switched Nd:YVO4 Laser

Author:

Guo Haowen1,Jia Chunyan1,Yao Yongping1,Bai Meng1,Ma Tiejun1,Zhang Jiayu1,Xia Jinbao1,Nie Hongkun1,Yao Bo1,He Jingliang12,Zhang Baitao12ORCID

Affiliation:

1. State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China

2. Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, China

Abstract

Two-dimensional (2D) violet phosphorus (VP) plays a significant role in the applications of photonic and optoelectronic devices due to its unique optical and electrical properties. The ultrafast carrier dynamics and nonlinear optical absorption properties were systematically investigated here. The intra- and inter-band ultrafast relaxation times of 2D VP nanosheets were measured to be ~6.83 ps and ~62.91 ps using the pump–probe method with a probe laser operating at 1.03 μm. The nonlinear absorption coefficient βeff, the saturation intensity Is, the modulation depth ΔR, and the nonsaturable loss were determined to be −2.18 × 104 cm/MW, 329 kW/cm2, 6.3%, and 9.8%, respectively, by using the Z-scan and I-scan methods, indicating the tremendous saturable absorption property of 2D VP nanosheets. Furthermore, the passively Q-switched Nd:YVO4 laser was realized with the 2D VP nanosheet-based SA, in which the average output power of 700 mW and the pulse duration of 478 ns were obtained. These results effectively reveal the nonlinear optical absorption characteristics of VP nanosheets, demonstrating their outstanding light-manipulating capabilities and providing a basis for the applications of ultrafast optical devices. Our results verify the excellent saturable absorption properties of 2D VP, paving the way for its applications in pulsed laser generation.

Funder

National Research Foundation of China

National Research Foundation of Shandong Province

the Youth Cross Innovation Group of Shandong University

Distinguished Young Scholars from Shandong University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3