Green Synthesis of Iron Nanoparticles Using an Aqueous Extract of Strawberry (Fragaria × ananassa Duchesne) Leaf Waste

Author:

Góral-Kowalczyk Małgorzata1,Grządka Elżbieta2ORCID,Orzeł Jolanta2,Góral Dariusz3ORCID,Skrzypek Tomasz4,Kobus Zbigniew5ORCID,Nawrocka Agnieszka6ORCID

Affiliation:

1. Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland

2. Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Skłodowskiej-Curie 3 Sq., 20-031 Lublin, Poland

3. Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland

4. Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland

5. Department of Technology Fundamentals, Faculty of Production Engineering, University of Life Sciences in Lublin, 28 Głęboka Street, 20-612 Lublin, Poland

6. Department of Physical Properties of Plant Materials, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland

Abstract

In this study, we analysed the potential use of dried strawberry leaves and calyces for the production of nanoparticles using inorganic iron compounds. We used the following iron precursors FeCl3 × 6H2O, FeCl2 × 4H2O, Fe(NO3)3 × 9H2O, Fe2(SO4)3 × H2O, FeSO4 × 7H2O, FeCl3 anhydrous. It was discovered that the content of polyphenols and flavonoids in dried strawberries and their antioxidant activity in DPPH and FRAP were 346.81 µM TE/1 g and 331.71 µM TE/1 g, respectively, and were similar to these of green tea extracts. Microimages made using TEM techniques allowed for the isolation of a few nanoparticles with dimensions ranging from tens of nanometres to several micrometres. The value of the electrokinetic potential in all samples was negative and ranged from −21,300 mV to −11,183 mV. XRF analyses confirmed the presence of iron ranging from 0.13% to 0.92% in the samples with a concentration of 0.01 mol/dm3. FT-IR spectra analyses showed bands characteristic of nanoparticles. In calorimetric measurements, no increase in temperature was observed in any of the tests during exposure to the electromagnetic field. In summary, using the extract from dried strawberry leaves and calyxes as a reagent, we can obtain iron nanoparticles with sizes dependent on the concentration of the precursor.

Funder

University of Life Sciences in Lublin

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3