Influence of Cold Wave Diversities on Thermal Stress and Thermal Fatigue Life of Asphalt Mixture

Author:

Haimei 1,Li Lili2,Guo Qinglin2,He Wenli2,Xu Aosen2

Affiliation:

1. Faculty of Road and Bridge Engineering, Inner Mongolia Vocational and Technical College of Communications, Chifeng 024005, China

2. School of Civil Engineering, Hebei University of Engineering, Handan 056038, China

Abstract

Apart from low-temperature cracking, asphalt pavement may also suffer from thermal fatigue cracking. To clarify the impact of cold waves on the thermal fatigue performance of asphalt mixtures, the typical atmospheric temperature characteristics of different regions in China from 2012 to 2019 were analyzed, and the frequency of cold waves in these regions was determined. The viscoelastic parameters of an asphalt mixture are determined through an indirect tensile relaxation test. The thermal stress of the asphalt mixture is simulated and analyzed by using the finite element method. The effect of cold waves on the thermal fatigue life of the asphalt mixture was evaluated. The results show that the frequency of cold waves is different from region to region in China, and the cold waves mainly occurred from October of one year to February of the next year. Northeast China has the most frequency and the largest temperature drop amplitude, followed by North China. The maximum thermal stress increases with the decrease in temperature drop and initial temperature and is unrelated to the duration of cold waves. The thermal stress calculated based on the atmospheric thermal boundary is higher than the value using the road surface temperature. The thermal fatigue lives of asphalt mixtures in North China and Northeast China are very short, while the thermal fatigue life of the mixture in Central China is the longest. To meet the requirement of thermal fatigue damage caused by cold waves during the designed service stage, the recommended threshold for thermal stress is 0.39–0.77 MPa.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3