Fabrication of Ceramic Microchannels with Periodic Corrugated Microstructures as Catalyst Support for Hydrogen Production via Diamond Wire Sawing

Author:

Li Xinying1,Gao Chao1,Yuan Ding1,Qin Yuanbao1,Fu Dongbi1,Jiang Xiyang1,Zhou Wei1ORCID

Affiliation:

1. Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China

Abstract

Hydrogen energy is the clean energy with the most potential in the 21st century. The microchannel reactor for methanol steam reforming (MSR) is one of the effective ways to obtain hydrogen. Ceramic materials have the advantages of high temperature resistance, corrosion resistance, and high mechanical strength, and are ideal materials for preparing the catalyst support in microchannel reactors. However, the structure of ceramic materials is hard and brittle, and the feature size of microchannel is generally not more than 1 mm, which is difficult to process using traditional processing methods. Diamond wire saw processing technology is mainly used in the slicing of hard and brittle materials such as sapphire and silicon. In this paper, a microchannel with a periodic corrugated microstructure was fabricated on a ceramic plate using diamond wire sawing, and then as a catalyst support when used in a microreactor for MSR hydrogen production. The effects of wire speed and feed speed on the amplitude and period size of the periodic corrugated microstructure were studied using a single-factor experiment. The microchannel surface morphology was observed via SEM and a 3D confocal laser microscope under different processing parameters. The microchannel samples obtained under different processing parameters were supported by a multiple impregnation method. The loading strength of the catalyst was tested via a strong wind purge experiment. The experimental results show that the periodic corrugated microstructure can significantly enhance the load strength of the catalyst. The microchannel catalyst support with the periodic corrugated microstructure was put into the microreactor for a hydrogen production experiment, and a good hydrogen production effect was obtained. The experimental results have a positive guiding effect on promoting ceramic materials as the microchannel catalyst support for the development of hydrogen energy.

Funder

National Natural Science Foundation of China

Science and Technology Major Program of Fujian Province, China

Major Science and Technology Plan of Xiamen City, Fujian, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3