Defoaming and Toughening Effects of Highly Dispersed Graphene Oxide Modified by Amphoteric Polycarboxylate Superplasticizer on Oil Well Cement

Author:

Zeng Min1,Xing Yubing2,Xie Yongxu23ORCID,Xu Dawei1,Miao Xia1,Guo Jintang23

Affiliation:

1. Sinopec Research Institute of Petroleum Engineering Co., Ltd., Beijing 102206, China

2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China

3. Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China

Abstract

The aggregation of graphene oxide (GO) during the hydration process limits its wide application. Polymer superplasticizers have been used to improve the dispersion state of GO due to their adsorption and site-blocking effects, though the formation of a large amount of foam during the mixing process weakens the mechanical properties of cement. A highly dispersed amphoteric polycarboxylate superplasticizer-stabilized graphene oxide (APC/GO) toughening agent was prepared by electrostatic self-assembly. Results demonstrate that the APC/GO composite dispersed well in a cement pore solution due to the steric effect offered by the APC. Additionally, the well-dispersed GO acted as an antifoaming agent in the cement since GO nanosheets can be absorbed at the air–liquid interface of APC foam via electrostatic interactions and eliminate the air-entraining effect. The well-dispersed APC/GO sheets promoted cement hydration and further refined its pore structure owing to the nucleation effect. The flexural and compressive strength of the cement containing the APC/GO composite were enhanced by 21.51% and 18.58%, respectively, after a 7-day hydration process compared with a blank sample. The improved hydration degree, highly polymerized C-S-H gel, and refined pore structure provided enhanced mechanical properties.

Funder

Sinopec Research Institute of Petroleum Engineering Co., Ltd.

Tianjin University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3