Effect of Strain Rate on Mechanical Deformation Behavior in CuZr Metallic Glass

Author:

Fan Beibei1,Li Maozhi12ORCID

Affiliation:

1. Beijing Key Laboratory of Opto-Electronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China

2. Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China

Abstract

Tensile tests were performed on Cu64Zr36 metallic glass at strain rates of 107/s, 108/s, and 109/s via classical molecular dynamics simulations to explore the underlying mechanism by which strain rate affects deformation behavior. It was found that strain rate has a great impact on the deformation behavior of metallic glass. The higher the strain rate is, the larger the yield strength. We also found that the strain rate changes the atomic structure evolution during deformation, but that the difference in the atomic structure evolution induced by different strain rates is not significant. However, the mechanical response under deformation conditions is found to be significantly different with the change in strain rate. The average von Mises strain of a system in the case of 107/s is much larger than that of 109/s. In contrast, more atoms tend to participate in deformation with increasing strain rate, indicating that the strain localization degree is more significant in cases of lower strain rates. Therefore, increasing the strain rate reduces the degree of deformation heterogeneity, leading to an increase in yield strength. Further analysis shows that the structural features of atomic clusters faded out during deformation as the strain rate increased, benefiting more homogeneous deformation behavior. Our findings provide more useful insights into the deformation mechanisms of metallic glass.

Funder

National Natural Science Foundation of China

Physical Laboratory of High-Performance Computing at Renmin University of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3