Investigation on the Preparation and Performances of Epoxy-Modified Asphalt Binder and Its Mixtures

Author:

Liu Xiaodong12,Wu Zhiheng1,Min Zhaohui1,Zhang Lei1

Affiliation:

1. School of Transportation, Southeast University, Nanjing 211189, China

2. CCCC Highway Consultants Company Limited, Beijing 101300, China

Abstract

Epoxy-modified asphalt binder has been widely used in steel deck pavement due to its excellent properties and it is a potential candidate for long life pavements. However, its short reserve time limits its widespread application in pavement engineering. Therefore, this work developed a novel epoxy-modified asphalt binder composed of a laboratory-made curing agent as a solution. Firstly, optimization of preparation temperature of this new material was studied to balance the requirements of enough construction time and the material strength and elongation. The epoxy-modified asphalt binder, prepared at the optimal temperature of 140 °C, had a reserve time exceeding 120 min, whereas the tensile strength and the elongation at failure were 2.22 MPa and 216%, respectively, which satisfied the standard requirements of paving epoxy material well. Secondly, the asphalt mixture property tests demonstrate excellent high-temperature rutting resistance, water stability and low-temperature anti-cracking ability. Additionally, the compatibility and colloidal stability of this epoxy-modified asphalt binder were analyzed in terms of microphase structure. The uniform microphase distribution of this binder showed by the laser confocal microscope observation in both short-term aging case and long-term aging case, indicates the great compatibility between asphalt and epoxy resin during paving process and service life. Furthermore, fatigue tests were conducted to evaluate the long-term durability. The fatigue life of epoxy-modified asphalt mixtures increased by 435%, 427%, 342%, and 276% under the stress ratios of 0.3, 0.4, 0.5, and 0.6, respectively, compared to those of SBS-modified asphalt mixtures. All these results indicate that the new epoxy-modified asphalt material is promising for applications in pavement engineering, especially suitable for long-life road pavement.

Funder

National Natural Science Foundation of China

China Airport Construction Group Corporation Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3