A Review on Traditional Processes and Laser Powder Bed Fusion of Aluminum Alloy Microstructures, Mechanical Properties, Costs, and Applications

Author:

Wang Xin12,Zhang Dongyun12,Li Ang34,Yi Denghao12,Li Tianci12

Affiliation:

1. Institute of Laser Engineering, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China

2. Beijing Engineering Research Center of 3D Printing for Digital Medical Health, Beijing 100124, China

3. China United Gas Turbine Technology Co., Ltd., Beijing 100016, China

4. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Abstract

Due to its lightweight, high strength, good machinability, and low cost, aluminum alloy has been widely used in fields such as aerospace, automotive, electronics, and construction. Traditional manufacturing processes for aluminum alloys often suffer from low material utilization, complex procedures, and long manufacturing cycles. Therefore, more and more scholars are turning their attention to the laser powder bed fusion (LPBF) process for aluminum alloys, which has the advantages of high material utilization, good formability for complex structures, and short manufacturing cycles. However, the widespread promotion and application of LPBF aluminum alloys still face challenges. The excellent printable ability, favorable mechanical performance, and low manufacturing cost are the main factors affecting the applicability of the LPBF process for aluminum alloys. This paper reviews the research status of traditional aluminum alloy processing and LPBF aluminum alloy and makes a comparison from various aspects such as microstructures, mechanical properties, application scenarios, and manufacturing costs. At present, the LPBF manufacturing cost for aluminum alloys is 2–120 times higher than that of traditional manufacturing methods, with the discrepancy depending on the complexity of the part. Therefore, it is necessary to promote the further development and application of aluminum alloy 3D printing technology from three aspects: the development of aluminum matrix composite materials reinforced with nanoceramic particles, the development of micro-alloyed aluminum alloy powders specially designed for LPBF, and the development of new technologies and equipment to reduce the manufacturing cost of LPBF aluminum alloy.

Funder

National Key Research and Development Program

Postdoctoral Research Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3