Unveiling the Stacking Fault-Driven Phase Transition Delaying Cryogenic Fracture in Fe-Co-Cr-Ni-Mo-C-Based Medium-Entropy Alloy

Author:

Ding Hui1,Du Zhenhang1,Zhang Haifeng1,Liu Yu1,Zhao Shiteng2,Yang Yonggang3,Wang Changjun1,Lei Simin1,Geng Ruming1,Wang Chunxu1

Affiliation:

1. Central Iron and Steel Research Institute, Beijing 100081, China

2. School of Materials Science and Engineering, Beihang University, Beijing 100191, China

3. National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, University of Science and Technology Beijing, Beijing 100083, China

Abstract

In this work, the tensile deformation mechanisms of the Fe55Co17.5Cr12.5Ni10Mo5−xCx-based medium-entropy alloy at room temperature (R.T.), 77 K, and 4.2 K are studied. The formation of micro-defects and martensitic transformation to delay the cryogenic fracture are observed. The results show that FeCoCrNiMo5−xCx-based alloys exhibit outstanding mechanical properties under cryogenic conditions. Under an R.T. condition, the primary contributing mechanism of strain hardening is twinning-induced plasticity (TWIP), whereas at 77 K and 4.2 K, the activation of martensitic transformation-induced plasticity (TRIP) becomes the main strengthening mechanism during cryogenic tensile deformation. Additionally, the carbide precipitation along with increased dislocation density can significantly improve yield and tensile strength. Furthermore, the marked reduction in stacking fault energy (SFE) at cryogenic temperatures can promote mechanisms such as twinning and martensitic transformations, which are pivotal for enhancing ductility under extreme conditions. The Mo4C1 alloy obtains the optimal strength–ductility combination at cryogenic-to-room temperatures. The tensile strength and elongation of the Mo4C1 alloy are 776 MPa and 50.5% at R.T., 1418 MPa and 71.2% in liquid nitrogen 77 K, 1670 MPa and 80.0% in liquid helium 4.2 K, respectively.

Funder

Major Program of CISRI Funding

National Key R&D Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3