Bayesian Hierarchical Model Uncertainty Quantification for Future Hydroclimate Projections in Southern Hills-Gulf Region, USA

Author:

Beigi Ehsan,Tsai Frank,Singh Vijay,Kao Shih-Chieh

Abstract

The study investigates the hierarchical uncertainty of multi-ensemble hydroclimate projections for the Southern Hills-Gulf region, USA, considering emission pathways and a global climate model (GCM) as two main sources of uncertainty. Forty projections of downscaled daily air temperature and precipitation from 2010 to 2099 under four emission pathways and ten CMIP5 GCMs are adopted for hydroclimate modeling via the HELP3 hydrologic model. This study focuses on evapotranspiration (ET), surface runoff, and groundwater recharge projections in this century. Climate projection uncertainty is characterized by the hierarchical Bayesian model averaging (HBMA) method, which segregates emission pathway uncertainty and climate model uncertainty. HBMA is able to derive ensemble means and standard deviations, arising from individual uncertainty sources, for ET, runoff, and recharge. The model results show that future recharge in the Southern Hills-Gulf region is more sensitive to different climate projections and exhibits higher variability than ET and runoff. Overall, ET is likely to increase and runoff is likely to decrease in this century given the current emission path scenarios. Runoff are predicted to have an 18% to 20% decrease and ET is predicted to have around a 3% increase throughout the century. Groundwater recharge is likely to increase in this century with a decreasing trend. Recharge would increase about 13% in the early century and will have only a 3% increase in the late century. All hydrological projections have increasing uncertainty towards the end of the century. The HBMA result suggests that the GCM uncertainty dominates the overall hydrological projection uncertainty in the early century and the mid-century. The emission pathway uncertainty becomes important in the late century.

Funder

U.S. Geological Survey

U.S. Department of Energy

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3