Optimal Neighborhood Selection for AR-ARCH Random Fields with Application to Mortality

Author:

Doukhan PaulORCID,Rynkiewicz JosephORCID,Salhi YahiaORCID

Abstract

This article proposes an optimal and robust methodology for model selection. The model of interest is a parsimonious alternative framework for modeling the stochastic dynamics of mortality improvement rates introduced recently in the literature. The approach models mortality improvements using a random field specification with a given causal structure instead of the commonly used factor-based decomposition framework. It captures some well-documented stylized facts of mortality behavior including: dependencies among adjacent cohorts, the cohort effects, cross-generation correlations, and the conditional heteroskedasticity of mortality. Such a class of models is a generalization of the now widely used AR-ARCH models for univariate processes. A the framework is general, it was investigated and illustrated a simple variant called the three-level memory model. However, it is not clear which is the best parameterization to use for specific mortality uses. In this paper, we investigate the optimal model choice and parameter selection among potential and candidate models. More formally, we propose a methodology well-suited to such a random field able to select thebest model in the sense that the model is not only correct but also most economical among all thecorrectmodels. Formally, we show that a criterion based on a penalization of the log-likelihood, e.g., the using of the Bayesian Information Criterion, is consistent. Finally, we investigate the methodology based on Monte-Carlo experiments as well as real-world datasets.

Publisher

MDPI AG

Reference40 articles.

1. Understanding, modelling and managing longevity risk: key issues and main challenges

2. Modeling and forecasting US mortality;Lee;J. Am. Stat. Assoc.,1992

3. Robustness and convergence in the Lee–Carter model with cohort effects

4. A class of random field memory models for mortality forecasting

5. A fixed point approach to model random fields;Doukhan;ALEA: Lat. Am. J. Probab. Math. Stat.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3