Path Analysis of Sea-Level Rise and Its Impact

Author:

Chung JeanORCID,Tong GuanchaoORCID,Chao JiayouORCID,Zhu Wei

Abstract

Global sea-level rise has been drawing increasingly greater attention in recent years, as it directly impacts the livelihood and sustainable development of humankind. Our research focuses on identifying causal factors and pathways on sea level changes (both global and regional) and subsequently predicting the magnitude of such changes. To this end, we have designed a novel analysis pipeline including three sequential steps: (1) a dynamic structural equation model (dSEM) to identify pathways between the global mean sea level (GMSL) and various predictors, (2) a vector autoregression model (VAR) to quantify the GMSL changes due to the significant relations identified in the first step, and (3) a generalized additive model (GAM) to model the relationship between regional sea level and GMSL. Historical records of GMSL and other variables from 1992 to 2020 were used to calibrate the analysis pipeline. Our results indicate that greenhouse gases, water, and air temperatures, change in Antarctic and Greenland Ice Sheet mass, sea ice, and historical sea level all play a significant role in future sea-level rise. The resulting 95% upper bound of the sea-level projections was combined with a threshold for extreme flooding to map out the extent of sea-level rise in coastal communities using a digital coastal tracker.

Publisher

MDPI AG

Reference33 articles.

1. Statistical Analysis of Global Surface Temperature and Sea Level Using Cointegration Methods

2. Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities;Oppenheimer,2019

3. Patterns and Projections of High Tide Flooding along the US Coastline Using a Common Impact Threshold;Sweet,2018

4. NPRhttps://www.npr.org/templates/story/story.php?storyId=9162438#:~:text=Study%3A%20634%20Million%20People%20at%20Risk%20from%20Rising%20Seas%20A,related%20impacts%20of%20climate%20change

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3