Sex Differences in Mouse Cardiac Electrophysiology Revealed by Simultaneous Imaging of Excitation-Contraction Coupling

Author:

Emerson James I.1ORCID,Ariel Pablo2ORCID,Shi Wei3ORCID,Conlon Frank L.34

Affiliation:

1. Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

2. Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

3. Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

4. Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

Abstract

Males and females differ in the basic anatomy and physiology of the heart. Sex differences are evident in cardiac repolarization in humans; women have longer corrected QT and JT intervals. However, the molecular mechanisms that lead to these differences are incompletely understood. Here, we present that, like in humans, sex differences in QT and JT intervals exist in mouse models; female mice had longer corrected QT and JT intervals compared with age-matched males. To further understand the molecular underpinning of these sex differences, we developed a novel technology using fluorescent confocal microscopy that allows the simultaneous visualization of action potential, Ca2+ transients, and contractions in isolated cardiomyocytes at a high temporal resolution. From this approach, we uncovered that females at baseline have increased action potential duration, decreased Ca2+ release and reuptake rates, and decreased contraction and relaxation velocities compared with males. Additionally, males had a shorter overall time from action potential onset to peak contraction. In aggregate, our studies uncovered male and female differences in excitation-contraction coupling that account for differences observed in the EKG. Overall, a better understanding of sex differences in electrophysiology is essential for equitably treating cardiac disease.

Funder

National Institutes of Health (NIH)/National Heart, Lung, and Blood Institute

Publisher

MDPI AG

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feeding behavior modifies the circadian variation in RR and QT intervals by distinct mechanisms in mice;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3