Hippo Signaling Mediates TGFβ-Dependent Transcriptional Inputs in Cardiac Cushion Mesenchymal Cells to Regulate Extracellular Matrix Remodeling

Author:

Chakrabarti Mrinmay1,Chattha Ahad1,Nair Abhijith1,Jiao Kai2,Potts Jay D.1,Wang Lianming3ORCID,Branch Scotty4,Harrelson Shea4,Khan Saeed4,Azhar Mohamad15ORCID

Affiliation:

1. Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29202, USA

2. Center for Biotechnology & Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA

3. Department of Statistics, University of South Carolina, Columbia, SC 29208, USA

4. KOR Life Sciences, KOR Medical, and Vikor Scientific, Charleston, SC 29403, USA

5. William Jennings Bryan Dorn VA Medical Center, Columbia, SC 29202, USA

Abstract

The transforming growth factor beta (TGFβ) and Hippo signaling pathways are evolutionarily conserved pathways that play a critical role in cardiac fibroblasts during embryonic development, tissue repair, and fibrosis. TGFβ signaling and Hippo signaling are also important for cardiac cushion remodeling and septation during embryonic development. Loss of TGFβ2 in mice causes cardiac cushion remodeling defects resulting in congenital heart disease. In this study, we used in vitro molecular and pharmacologic approaches in the cushion mesenchymal cell line (tsA58-AVM) and investigated if the Hippo pathway acts as a mediator of TGFβ2 signaling. Immunofluorescence staining showed that TGFβ2 induced nuclear translocation of activated SMAD3 in the cushion mesenchymal cells. In addition, the results indicate increased nuclear localization of Yes-associated protein 1 (YAP1) following a similar treatment of TGFβ2. In collagen lattice formation assays, the TGFβ2 treatment of cushion cells resulted in an enhanced collagen contraction compared to the untreated cushion cells. Interestingly, verteporfin, a YAP1 inhibitor, significantly blocked the ability of cushion cells to contract collagen gel in the absence or presence of exogenously added TGFβ2. To confirm the molecular mechanisms of the verteporfin-induced inhibition of TGFβ2-dependent extracellular matrix (ECM) reorganization, we performed a gene expression analysis of key mesenchymal genes involved in ECM remodeling in heart development and disease. Our results confirm that verteporfin significantly decreased the expression of α-smooth muscle actin (Acta2), collagen 1a1 (Col1a1), Ccn1 (i.e., Cyr61), and Ccn2 (i.e., Ctgf). Western blot analysis indicated that verteporfin treatment significantly blocked the TGFβ2-induced activation of SMAD2/3 in cushion mesenchymal cells. Collectively, these results indicate that TGFβ2 regulation of cushion mesenchymal cell behavior and ECM remodeling is mediated by YAP1. Thus, the TGFβ2 and Hippo pathway integration represents an important step in understanding the etiology of congenital heart disease.

Funder

University of South Carolina, School of Medicine

ASPIRE-II

National Institutes of Health grants

Publisher

MDPI AG

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3