Responses of Net Anthropogenic N Inputs and Export Fluxes in the Megacity of Chengdu, China

Author:

Ding YaoORCID,Lai Chengyue,Shi Qing,Ouyang Lili,Wang Zhaoli,Yao Gang,Jia Binyang

Abstract

Anthropogenic N inputs have become progressively more problematic and have profoundly affected the water quality in megacities throughout China. Thus, to design and implement appropriate megalopolis watershed management, it is important to understand the relationship between N inputs and exports and to identify the N pollution sources. To that end, in this work, the net anthropogenic N inputs (NANI) in Chengdu City were estimated based on statistical data collected between 1970 and 2019. N input fluxes and pollution sources were estimated through sample collection and field measurements that were performed between 2017 and 2019, while nitrate (NO3−) was identified using stable isotope and Bayesian model (SIAR) analysis. The NANI was found to be affected primarily by livestock and poultry consumption of N rich feed. Moreover, the N export fluxes and runoff showed a high degree of correlation. Notably, NO3− fluxes exhibited a significant increase over the course of the study period, such that, by 2019, the total N fluxes (18,883.85 N kg/km2) exceeded the NANI (17,093.87 N kg/km2). The results indicate that although livestock and poultry farming were the original primary sources of NANI, their contributions declined on an annual basis. Moreover, with the emphasis placed on point source management in Chengdu City, domestic sewage discharge has been significantly reduced. Therefore, N retention in groundwater is thought to be the factor driving the N flux increase. These findings are pivotal to solving the N pollution problem in megacities like Chengdu (China).

Funder

National Science Foundation of China

Water Pollution and Technology Foundation Project of the Chengdu Ecological Environment Bureau entitled “Source Analysis of Surface Water Pollutions in Chengdu City”

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3