Enhancing PM2.5 Prediction Using NARX-Based Combined CNN and LSTM Hybrid Model

Author:

Moursi Ahmed Samy AbdElAzizORCID,El-Fishawy Nawal,Djahel SoufieneORCID,Shouman Marwa A.

Abstract

In a world where humanity’s interests come first, the environment is flooded with pollutants produced by humans’ urgent need for expansion. Air pollution and climate change are side effects of humans’ inconsiderate intervention. Particulate matter of 2.5 µm diameter (PM2.5) infiltrates lungs and hearts, causing many respiratory system diseases. Innovation in air pollution prediction is a must to protect the environment and its habitants, including those of humans. For that purpose, an enhanced method for PM2.5 prediction within the next hour is introduced in this research work using nonlinear autoregression with exogenous input (NARX) model hosting a convolutional neural network (CNN) followed by long short-term memory (LSTM) neural networks. The proposed enhancement was evaluated by several metrics such as index of agreement (IA) and normalized root mean square error (NRMSE). The results indicated that the CNN–LSTM/NARX hybrid model has the lowest NRMSE and the best IA, surpassing the state-of-the-art proposed hybrid deep-learning algorithms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference56 articles.

1. Human Population Growth;Goujon,2019

2. Air Pollution Facts, Causes and the Effects of Pollutants in the Air|NRDC https://www.nrdc.org/stories/air-pollution-everything-you-need-know

3. Environmental and Health Impacts of Air Pollution: A Review

4. Air Quality and Climate Change Research|US EPA;United States Environmental Protection Agency

5. Criteria Air Pollutants|US EPA;United States Environmental Protection Agency

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3