Abstract
In this paper, we study the complex dynamic characteristics of a simple nonlinear logistic map. The map contains two parameters that have complex influences on the map’s dynamics. Assuming different values for those parameters gives rise to strange attractors with fractal dimensions. Furthermore, some of these chaotic attractors have heteroclinic cycles due to saddle-fixed points. The basins of attraction for some periodic cycles in the phase plane are divided into three regions of rank-1 preimages. We analyze those regions and show that the map is noninvertible and includes Z0,Z2 and Z4 regions.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献