Topological Analysis of Fibrations in Multidimensional (C, R) Space

Author:

Bagchi Susmit

Abstract

A holomorphically fibred space generates locally trivial bundles with positive dimensional fibers. This paper proposes two varieties of fibrations (compact and non-compact) in the non-uniformly scalable quasinormed topological (C, R) space admitting cylindrically symmetric continuous functions. The projective base space is dense, containing a complex plane, and the corresponding surjective fiber projection on the base space can be fixed at any point on real subspace. The contact category fibers support multiple oriented singularities of piecewise continuous functions within the topological space. A composite algebraic operation comprised of continuous linear translation and arithmetic addition generates an associative magma in the non-compact fiber space. The finite translation is continuous on complex planar subspace under non-compact projection. Interestingly, the associative magma resists transforming into a monoid due to the non-commutativity of composite algebraic operation. However, an additive group algebraic structure can be admitted in the fiber space if the fibration is a non-compact variety. Moreover, the projection on base space supports additive group structure, if and only if the planar base space passes through the real origin of the topological (C, R) space. The topological analysis shows that outward deformation retraction is not admissible within the dense topological fiber space. The comparative analysis of the proposed fiber space with respect to Minkowski space and Seifert fiber space illustrates that the group algebraic structures in each fiber spaces are of different varieties. The proposed topological fiber bundles are rigid, preserving sigma-sections as compared to the fiber bundles on manifolds.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3