Abstract
The effects of Lorentz and CPT violations on macroscopic objects are explored. Effective composite coefficients for Lorentz violation are derived in terms of coefficients for electrons, protons, and neutrons in the Standard-Model Extension, including all minimal and non-minimal violations. The hamiltonian and modified Newton’s second law for a test body are derived. The framework is applied to free-fall and torsion-balance tests of the weak equivalence principle and to orbital motion. The effects on continuous media are studied, and the frequency shifts in acoustic resonators are calculated.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献