Modulated Viscosity-Dependent Parameters for MHD Blood Flow in Microvessels Containing Oxytactic Microorganisms and Nanoparticles

Author:

Elogail M. A.,Mekheimer Kh. S.ORCID

Abstract

This work’s primary purpose is to implement a numerical study that simulates blood flow through a microvessel involving oxytactic microorganisms and nanoparticles. The oxytactic microorganisms exhibit negative chemotaxis to gradients of oxygen (oxygen repellents). These microorganisms are to batter infected hypoxic tumor cells as drug-carriers. The viscosity of blood is to vary with temperature, shear-thinning, and nanoparticle concentration. We have formulated a mathematical model then simplified it under assumptions of long wavelength and low Reynold’s number. The resulting non-linear coupled differential equation system is solved numerically with the MATHEMATICA software aid using the built-in command (ParametricNDSolve). This study treated all non-dimensional parameters defined in terms of viscosity to be variables (VP-Model), unlike some previous literature attempts that have considered these parameters mentioned above as constants (CP-Model). The achieved results assured the reliability of the (VP-Model) over the (CP-Model). Our results reveal that temperature and microorganism density increase with the thermophoresis parameter. The impact of increasing the Brownian motion parameter is to increase temperature and lessen microorganism density. Outcomes also indicate an enhancement in the microorganism density towards the hypoxic tumor regions located aside the microvessel walls by boosting oxygen concentrations in the streamflow. The current study is believed to provide further opportunities to improve drug-carrier applications in hypoxic tumor regions by better recognizing the flow features, heat, and mass transfer in such zones.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3