Life Cycle, PESTLE, and Multi-Criteria Decision Analyses of Novel Process for Nitrogen Recovery from Reject Water: Combining Electroconcentration and Stripping Methods

Author:

Nagy Judit1,Do Thi Huyen Trang1,Toth Andras Jozsef1ORCID

Affiliation:

1. Environmental and Process Engineering Research Group, Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary

Abstract

Reactive nitrogen (Nr) has become an essential nutrient to reclaim and recycle from wastewater. Nitrogen has become a valued resource that is beneficial to recover in the wastewater sector, as nitrogen is a key component in many fertilizers. The main subject of this work is to investigate the environmental consequences of a novel nitrogen recovery process from reject water. In our study, Life Cycle Analysis (LCA), PESTLE, and Multi-Criteria Decision Analysis (MCDA) were used to examine combining electroconcentration and stripping methods, including Monte Carlo simulation. Using SimaPro V9.3 software, the EF 3.0 Method, IPCC 2021 GWP100, ReCiPe 2016, and IMPACT World+ Endpoint were applied with heat and power, electricity high voltage, nuclear energy, and two renewable energies (solar and wind). EF 3.0 was endorsed by the European Commission for environmental footprinting. The operational unit of 1 m3 of reject water was chosen as the output, and “gate-to-gate” analysis was investigated. Our calculations show that the energies derived from natural sources reduce fossil-based environmental impacts and CO2 emissions significantly compared with conventional energy sources. A TOPSIS score was applied to appraise the choices in the case of MCDA. For the Australian territory, for the place of implementation of the technology, the most beneficial option was discovered to be wind energy offshore, with a score of 0.95, and the next was solar energy at 0.87.

Funder

OTKA

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3