Nitrogen Retention Effects under Reservoir Regulation at Multiple Time Scales in a Subtropical River Basin

Author:

Liu Meibing,Chen Xingwei,Chen Ying,Gao Lu,Deng Haijun

Abstract

Reservoirs are an important nitrogen sink as a result of their retention effect, but their retention performance may vary with hydrologic conditions with time-varying characteristics, which also change them from being a sink to source over time. This study uses a coupled modelling system (Soil and Water Assessment Tool (SWAT) and a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2) to analyze the nitrogen retention effect and influential factors at annual, monthly, and daily scales in Shanmei Reservoir in southeast China. The results showed that there was a positive retention effect of total nitrogen (TN), nitrate-nitrogen (NO3-N) and ammonia nitrogen (NH4-N) in most years, with average retention rates up to 12.7%, 7.83% and 26.17%, respectively. The reservoir serves mainly as a nitrogen sink at an annual scale. The monthly retention performances of TN and NO3-N were observed during the wet season (April–October) with higher water temperature and lower velocity, while a release effect occurred during the dry season (November–March). For NH4-N, which is prone to nitrification, the retention effect lasted longer, from May to December. The daily nitrogen retention process changed more dramatically, with the retention rate varying from −292.49 to 58.17%. During the period of dispatch, the regulated discharge was the primary factor of daily retention performance, while the hydraulic residence time, velocity and water level were all significantly correlated with nitrogen retention during the period without dispatch.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3