An Optimized Instance Segmentation of Underlying Surface in Low-Altitude TIR Sensing Images for Enhancing the Calculation of LSTs

Author:

Wu Yafei12ORCID,He Chao12,Shan Yao12,Zhao Shuai3ORCID,Zhou Shunhua12

Affiliation:

1. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China

2. Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai 201804, China

3. Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China

Abstract

The calculation of land surface temperatures (LSTs) via low-altitude thermal infrared remote (TIR) sensing images at a block scale is gaining attention. However, the accurate calculation of LSTs requires a precise determination of the range of various underlying surfaces in the TIR images, and existing approaches face challenges in effectively segmenting the underlying surfaces in the TIR images. To address this challenge, this study proposes a deep learning (DL) methodology to complete the instance segmentation and quantification of underlying surfaces through the low-altitude TIR image dataset. Mask region-based convolutional neural networks were utilized for pixel-level classification and segmentation with an image dataset of 1350 annotated TIR images of an urban rail transit hub with a complex distribution of underlying surfaces. Subsequently, the hyper-parameters and architecture were optimized for the precise classification of the underlying surfaces. The algorithms were validated using 150 new TIR images, and four evaluation indictors demonstrated that the optimized algorithm outperformed the other algorithms. High-quality segmented masks of the underlying surfaces were generated, and the area of each instance was obtained by counting the true-positive pixels with values of 1. This research promotes the accurate calculation of LSTs based on the low-altitude TIR sensing images.

Funder

National Key R&D Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3