Automated Porosity Characterization for Aluminum Die Casting Materials Using X-ray Radiography, Synthetic X-ray Data Augmentation by Simulation, and Machine Learning

Author:

Bosse Stefan1ORCID,Lehmhus Dirk2ORCID,Kumar Sanjeev3

Affiliation:

1. Department of Mathematics & Computer Science, University of Bremen, 28359 Bremen, Germany

2. Fraunhofer Institute for Manufacturing Technology and Advanced Materials, 28359 Bremen, Germany

3. Department of Mechanical Engineering, University of Bremen, 28359 Bremen, Germany

Abstract

Detection and characterization of hidden defects, impurities, and damages in homogeneous materials like aluminum die casting materials, as well as composite materials like Fiber–Metal Laminates (FML), is still a challenge. This work discusses methods and challenges in data-driven modeling of automated damage and defect detectors using measured X-ray single- and multi-projection images. Three main issues are identified: Data and feature variance, data feature labeling (for supervised machine learning), and the missing ground truth. It will be shown that simulation of synthetic measuring data can deliver a ground truth dataset and accurate labeling for data-driven modeling, but it cannot be used directly to predict defects in manufacturing processes. Noise has a significant impact on the feature detection and will be discussed. Data-driven feature detectors are implemented with semantic pixel Convolutional Neural Networks. Experimental data are measured with different devices: A low-quality and low-cost (Low-Q) X-ray radiography, a typical industrial mid-quality X-ray radiography and Computed Tomography (CT) system, and a state-of-the-art high-quality μ-CT device. The goals of this work are the training of robust and generalized data-driven ML feature detectors with synthetic data only and the transition from CT to single-projection radiography imaging and analysis. Although, as the title implies, the primary task is pore characterization in aluminum high-pressure die-cast materials, but the methods and results are not limited to this use case.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3