Arduino-Based Myoelectric Control: Towards Longitudinal Study of Prosthesis Use

Author:

Wu HancongORCID,Dyson MatthewORCID,Nazarpour KianoushORCID

Abstract

Understanding how upper-limb prostheses are used in daily life helps to improve the design and robustness of prosthesis control algorithms and prosthetic components. However, only a very small fraction of published research includes prosthesis use in community settings. The cost, limited battery life, and poor generalisation may be the main reasons limiting the implementation of home-based applications. In this work, we introduce the design of a cost-effective Arduino-based myoelectric control system with wearable electromyogram (EMG) sensors. The design considerations focused on home studies, so the robustness, user-friendly control adjustments, and user supports were the main concerns. Three control algorithms, namely, direct control, abstract control, and linear discriminant analysis (LDA) classification, were implemented in the system. In this paper, we will share our design principles and report the robustness of the system in continuous operation in the laboratory. In addition, we will show a first real-time implementation of the abstract decoder for prosthesis control with an able-bodied participant.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3