Detection-Based Object Tracking Applied to Remote Ship Inspection

Author:

Xie JingORCID,Stensrud Erik,Skramstad Torbjørn

Abstract

We propose a detection-based tracking system for automatically processing maritime ship inspection videos and predicting suspicious areas where cracks may exist. This system consists of two stages. Stage one uses a state-of-the-art object detection model, i.e., RetinaNet, which is customized with certain modifications and the optimal anchor setting for detecting cracks in the ship inspection images/videos. Stage two is an enhanced tracking system including two key components. The first component is a state-of-the-art tracker, namely, Channel and Spatial Reliability Tracker (CSRT), with improvements to handle model drift in a simple manner. The second component is a tailored data association algorithm which creates tracking trajectories for the cracks being tracked. This algorithm is based on not only the intersection over union (IoU) of the detections and tracking updates but also their respective areas when associating detections to the existing trackers. Consequently, the tracking results compensate for the detection jitters which could lead to both tracking jitter and creation of redundant trackers. Our study shows that the proposed detection-based tracking system has achieved a reasonable performance on automatically analyzing ship inspection videos. It has proven the feasibility of applying deep neural network based computer vision technologies to automating remote ship inspection. The proposed system is being matured and will be integrated into a digital infrastructure which will facilitate the whole ship inspection process.

Funder

Norges Forskningsråd

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. Visual Inspection of the Aircraft Surface Using a Teleoperated Reconfigurable Climbing Robot and Enhanced Deep Learning Technique

2. Improvement of Corrosion Detection Using Vision System for Pipeline Inspection

3. Surveys, Verifications and Certificationhttp://www.imo.org/en/OurWork/MSAS/Pages/SurveysAndCertification.aspx

4. DNV GL Rolls out Remote Surveys for all Vesselshttps://www.dnvgl.com/news/dnv-gl-rolls-out-remote-surveys-for-all-vessels-142769

5. Remote. And Presenthttps://www.lr.org/en/remote-surveys/

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3