Inorganic Phosphate (Pi) Signaling in Endothelial Cells: A Molecular Basis for Generation of Endothelial Microvesicles in Uraemic Cardiovascular Disease

Author:

Abbasian NimaORCID,Bevington Alan,Burton James O.ORCID,Herbert Karl E.,Goodall Alison H.,Brunskill Nigel J.

Abstract

Hyperphosphataemia increases cardiovascular mortality in patients with kidney disease. Direct effects of high inorganic phosphate (Pi) concentrations have previously been demonstrated on endothelial cells (ECs), including generation of procoagulant endothelial microvesicles (MVs). However, no mechanism directly sensing elevated intracellular Pi has ever been described in mammalian cells. Here, we investigated the hypothesis that direct inhibition by Pi of the phosphoprotein phosphatase PP2A fulfils this sensing role in ECs, culminating in cytoskeleton disruption and MV generation. ECs were treated with control (1 mM [Pi]) vs. high (2.5 mM [Pi]), a condition that drives actin stress fibre depletion and MV generation demonstrated by confocal microscopy of F-actin and NanoSight Nanoparticle tracking, respectively. Immuno-blotting demonstrated that high Pi increased p-Src, p-PP2A-C and p-DAPK-1 and decreased p-TPM-3. Pi at 100 μM directly inhibited PP2A catalytic activity. Inhibition of PP2A enhanced inhibitory phosphorylation of DAPK-1, leading to hypophosphorylation of Tropomyosin-3 at S284 and MV generation. p-Src is known to perform inhibitory phosphorylation on DAPK-1 but also on PP2A-C. However, PP2A-C can itself dephosphorylate (and therefore inhibit) p-Src. The direct inhibition of PP2A-C by Pi is, therefore, amplified by the feedback loop between PP2A-C and p-Src, resulting in further PP2A-C inhibition. These data demonstrated that PP2A/Src acts as a potent sensor and amplifier of Pi signals which can further signal through DAPK-1/Tropomyosin-3 to generate cytoskeleton disruption and generation of potentially pathological MVs.

Funder

Kidney Research UK

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3