Role of miRNA-mRNA Interaction in Neural Stem Cell Differentiation of Induced Pluripotent Stem Cells

Author:

Kumar SatishORCID,Curran Joanne E.,DeLeon EricaORCID,Leandro Ana C.ORCID,Howard Tom E.,Lehman Donna M.,Williams-Blangero Sarah,Glahn David C.ORCID,Blangero John

Abstract

miRNA regulates the expression of protein coding genes and plays a regulatory role in human development and disease. The human iPSCs and their differentiated progenies provide a unique opportunity to identify these miRNA-mediated regulatory mechanisms. To identify miRNA–mRNA regulatory interactions in human nervous system development, well characterized NSCs were differentiated from six validated iPSC lines and analyzed for differentially expressed (DE) miRNome and transcriptome by RNA sequencing. Following the criteria, moderated t statistics, FDR-corrected p-value ≤ 0.05 and fold change—absolute (FC-abs) ≥2.0, 51 miRNAs and 4033 mRNAs were found to be significantly DE between iPSCs and NSCs. The miRNA target prediction analysis identified 513 interactions between 30 miRNA families (mapped to 51 DE miRNAs) and 456 DE mRNAs that were paradoxically oppositely expressed. These 513 interactions were highly enriched in nervous system development functions (154 mRNAs; FDR-adjusted p-value range: 8.06 × 10−15–1.44 × 10−4). Furthermore, we have shown that the upregulated miR-10a-5p, miR-30c-5p, miR23-3p, miR130a-3p and miR-17-5p miRNA families were predicted to down-regulate several genes associated with the differentiation of neurons, neurite outgrowth and synapse formation, suggesting their role in promoting the self-renewal of undifferentiated NSCs. This study also provides a comprehensive characterization of iPSC-generated NSCs as dorsal neuroepithelium, important for their potential use in in vitro modeling of human brain development and disease.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3