Author:
Smuder Ashley J.,Turner Sara M.,Schuster Cassandra M.,Morton Aaron B.,Hinkley J. Matthew,Fuller David D.
Abstract
Oxidative damage to the diaphragm as a result of cervical spinal cord injury (SCI) promotes muscle atrophy and weakness. Respiratory insufficiency is the leading cause of morbidity and mortality in cervical spinal cord injury (SCI) patients, emphasizing the need for strategies to maintain diaphragm function. Hyperbaric oxygen (HBO) increases the amount of oxygen dissolved into the blood, elevating the delivery of oxygen to skeletal muscle and reactive oxygen species (ROS) generation. It is proposed that enhanced ROS production due to HBO treatment stimulates adaptations to diaphragm oxidative capacity, resulting in overall reductions in oxidative stress and inflammation. Therefore, we tested the hypothesis that exposure to HBO therapy acutely following SCI would reduce oxidative damage to the diaphragm muscle, preserving muscle fiber size and contractility. Our results demonstrated that lateral contusion injury at C3/4 results in a significant reduction in diaphragm muscle-specific force production and fiber cross-sectional area, which was associated with augmented mitochondrial hydrogen peroxide emission and a reduced mitochondrial respiratory control ratio. In contrast, rats that underwent SCI followed by HBO exposure consisting of 1 h of 100% oxygen at 3 atmospheres absolute (ATA) delivered for 10 consecutive days demonstrated an improvement in diaphragm-specific force production, and an attenuation of fiber atrophy, mitochondrial dysfunction and ROS production. These beneficial adaptations in the diaphragm were related to HBO-induced increases in antioxidant capacity and a reduction in atrogene expression. These findings suggest that HBO therapy may be an effective adjunctive therapy to promote respiratory health following cervical SCI.
Funder
National Heart, Lung, and Blood Institute
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献