Comparable Effects of the Androgen Derivatives Danazol, Oxymetholone and Nandrolone on Telomerase Activity in Human Primary Hematopoietic Cells from Patients with Dyskeratosis Congenita

Author:

Vieri Margherita,Kirschner Martin,Tometten Mareike,Abels Anne,Rolles BenjaminORCID,Isfort Susanne,Panse Jens,Brümmendorf Tim H.ORCID,Beier Fabian

Abstract

Dyskeratosis congenita (DKC) is a rare inherited disease of impaired telomere maintenance that progressively leads to multi-organ failure, including the bone marrow. By enhancing telomerase activity, androgen derivatives (ADs) are a potential therapeutic option able to re-elongate previously shortened telomeres. Danazol, oxymetholone, and nandrolone are ADs most frequently used to treat DKC. However, no direct in vitro analyses comparing the efficacy of these ADs have been conducted so far. We therefore treated mononuclear cells derived from peripheral blood and bone marrow of four patients with mutations in telomerase reverse transcriptase (TERT, n = 1),in the telomerase RNA component (TERC, n = 2) and in dyskerin pseudouridine synthase 1 (DKC1, n = 1) and found no substantial differences in the activity of these three agents in patients with TERC/TERT mutations. All AD studied produced comparable improvements of proliferation rates as well as degrees of telomere elongation. Increased TERT expression levels were shown with danazol and oxymetholone. The beneficial effects of all ADs on proliferation of bone marrow progenitors could be reversed by tamoxifen, an estrogen antagonist abolishing estrogen receptor-mediated TERT expression, thereby underscoring the involvement of TERT in AD mechanism of action. In conclusion, no significant differences in the ability to functionally enhance telomerase activity could be observed for the three AD studied in vitro. Physicians therefore might choose treatment based on patients’ individual co-morbidities, e.g., pre-existing liver disease and expected side-effects.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3