Role of the Scavenger Receptor CD36 in Accelerated Diabetic Atherosclerosis

Author:

Navas-Madroñal Miquel,Castelblanco EsmeraldaORCID,Camacho MercedesORCID,Consegal MartaORCID,Ramirez-Morros Anna,Sarrias Maria RosaORCID,Perez Paulina,Alonso Nuria,Galán MaríaORCID,Mauricio DídacORCID

Abstract

Diabetes mellitus entails increased atherosclerotic burden and medial arterial calcification, but the precise mechanisms are not fully elucidated. We aimed to investigate the implication of CD36 in inflammation and calcification processes orchestrated by vascular smooth muscle cells (VSMCs) under hyperglycemic and atherogenic conditions. We examined the expression of CD36, pro-inflammatory cytokines, endoplasmic reticulum (ER) stress markers, and mineralization-regulating enzymes by RT-PCR in human VSMCs, cultured in a medium containing normal (5 mM) or high glucose (22 mM) for 72 h with or without oxidized low-density lipoprotein (oxLDL) (24 h). The uptake of 1,1′-dioctadecyl-3,3,3′,3-tetramethylindocarbocyanine perchlorate-fluorescently (DiI) labeled oxLDL was quantified by flow cytometry and fluorimetry and calcification assays were performed in VSMC cultured in osteogenic medium and stained by alizarin red. We observed induction in the expression of CD36, cytokines, calcification markers, and ER stress markers under high glucose that was exacerbated by oxLDL. These results were confirmed in carotid plaques from subjects with diabetes versus non-diabetic subjects. Accordingly, the uptake of DiI-labeled oxLDL was increased after exposure to high glucose. The silencing of CD36 reduced the induction of CD36 and the expression of calcification enzymes and mineralization of VSMC. Our results indicate that CD36 signaling is partially involved in hyperglycemia and oxLDL-induced vascular calcification in diabetes.

Funder

European Foundation for the Study of Diabetes

Instituto de Salud Carlos III

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3