Genome-Wide Identification of CsATGs in Tea Plant and the Involvement of CsATG8e in Nitrogen Utilization

Author:

Huang Wei,Ma Dan-Ni,Liu Hong-Ling,Luo Jie,Wang Pu,Wang Ming-Le,Guo Fei,Wang Yu,Zhao HuaORCID,Ni De-Jiang

Abstract

Nitrogen (N) is a macroelement with an indispensable role in the growth and development of plants, and tea plant (Camellia sinensis) is an evergreen perennial woody species with young shoots for harvest. During senescence or upon N stress, autophagy has been shown to be induced in leaves, involving a variety of autophagy-related genes (ATGs), which have not been characterized in tea plant yet. In this study, a genome-wide survey in tea plant genome identified a total of 80 Camellia Sinensis autophagy-related genes, CsATGs. The expression of CsATG8s in the tea plant showed an obvious increase from S1 (stage 1) to S4 (stage 4), especially for CsATG8e. The expression levels of AtATGs (Arabidopsis thaliana) and genes involved in N transport and assimilation were greatly improved in CsATG8e-overexpressed Arabidopsis. Compared with wild type, the overexpression plants showed earlier bolting, an increase in amino N content, as well as a decrease in biomass and the levels of N, phosphorus and potassium. However, the N level was found significantly higher in APER (aerial part excluding rosette) in the overexpression plants relative to wild type. All these results demonstrated a convincing function of CsATG8e in N remobilization and plant development, indicating CsATG8e as a potential gene for modifying plant nutrient utilization.

Funder

Ministry of Science and Technology of the People's Republic of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference61 articles.

1. Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review

2. Global Tea Breeding, Achievements, Challenges and Perspectives;Chen,2012

3. Emissions of N2O and NO from fertilized fields: Summary of available measurement data

4. An Earth-system perspective of the global nitrogen cycle

5. Effects of different foliar nitrogen fertilizers on cellular nitrogen metabolism and biomass of two shrub willow cultivars;Maegan;NRC Res. Press,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3