Inhibitory Effect of a Human MicroRNA, miR-6133-5p, on the Fibrotic Activity of Hepatic Stellate Cells in Culture

Author:

Hamada-Tsutsumi Susumu,Onishi Masaya,Matsuura Kentaro,Isogawa MasanoriORCID,Kawashima Keigo,Sato Yusuke,Tanaka Yasuhito

Abstract

Background: We recently identified 39 human microRNAs, which effectively suppress hepatitis B virus (HBV) replication in hepatocytes. Chronic HBV infection often results in active, hepatitis-related liver fibrosis; hence, we assessed whether any of these microRNAs have anti-fibrotic potential and predicted that miR-6133-5p may target several fibrosis-related genes. Methods: The hepatic stellate cell line LX-2 was transfected with an miR-6133-5p mimic and subsequently treated with Transforming growth factor (TGF)-β. The mRNA and protein products of the COL1A1 gene, encoding collagen, and the ACTA2 gene, an activation marker of hepatic stellate cells, were quantified. Results: The expression of COL1A1 and ACTA2 was markedly reduced in LX-2 cells treated with miR-6133-5p. Interestingly, phosphorylation of c-Jun N-terminal kinase (JNK) was also significantly decreased by miR-6133-5p treatment. The expression of several predicted target genes of miR-6133-5p, including TGFBR2 (which encodes Transforming Growth Factor Beta Receptor 2) and FGFR1 (which encodes Fibroblast Growth Factor Receptor 1), was also reduced in miR-6133-5p-treated cells. The knockdown of TGFBR2 by the corresponding small interfering RNA greatly suppressed the expression of COL1A1 and ACTA2. Treatment with the JNK inhibitor, SP600125, also suppressed COL1A1 and ACTA2 expression, indicating that TGFBR2 and JNK mediate the anti-fibrotic effect of miR-6133-5p. The downregulation of FGFR1 may result in a decrease of phosphorylated Akt, ERK (extracellular signal-regulated kinase), and JNK. Conclusion: miR-6133-5p has a strong anti-fibrotic effect, mediated by inactivation of TGFBR2, Akt, and JNK.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3