Author:
Choi Jae-Won,Maeng Woo-Youl,Koh Young-Hag,Lee Hyun,Kim Hyoun-Ee
Abstract
This study demonstrates the utility of camphene as the pore-regulating agent for phase separation-based 3D plotting to produce hierarchical macro/micro-porous poly(ε-caprolactone) (PCL)–calcium phosphate (CaP) composite scaffolds, specifically featuring highly microporous surfaces. Unlike conventional particulate porogens, camphene is highly soluble in acetone, the solvent for PCL polymer, but insoluble in coagulation medium (water). In this study, this unique characteristic supported the creation of numerous micropores both within and at the surfaces of PCL and PCL–CaP composite filaments when using high camphene contents (40 and 50 wt%). In addition, the incorporation of the CaP particles into PCL solutions did not deteriorate the formation of microporous structures, and thus hierarchical macro/micro-porous PCL–CaP composite scaffolds could be successfully produced. As the CaP content increased, the in vitro biocompatibility, apatite-forming ability, and mechanical properties (tensile strength, tensile modulus, and compressive modulus) of the PCL–CaP composite scaffolds were substantially improved.
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献