Influence of Blending of Nonionic Emulsifiers Having Various Hydrophilic Head Sizes on Lipid Oxidation: Investigation of Antioxidant Polarity—Interfacial Characteristics Relationship

Author:

Lee Jiyun,Choi Seung-JunORCID

Abstract

The purpose of this study was to deliver insights into the effect of interfacial composition and antioxidant polarity on the lipid oxidation of emulsions. Emulsions were created using blends of nonionic ethoxylated fatty acid alcohol surfactants with different hydrophilic head sizes, and lipophilic (TBHQ) and amphiphilic (lauryl gallate) antioxidants were incorporated into the emulsions. At the same surfactant concentration, emulsion stabilized with surfactant with a smaller hydrophilic head was more susceptible to lipid oxidation than that stabilized with surfactant with a larger hydrophilic head. When surfactants with a similar hydrophilic head size were used, lipid oxidation in emulsion containing more surfactant was slightly faster than that containing less surfactant. When emulsions were created with a 1:1 molar ratio mixture of surfactants with small and large hydrophilic heads, surfactant concentration (1.00 and 2.932 mM) had little effect on lipid peroxide generation rate. However, the concentration of thiobarbituric acid-reactive substances (TBARSs) in the emulsion prepared at 1.00 mM increased faster than that prepared at 2.93 mM. Alteration of interfacial composition and surfactant concentration did not affect antioxidant ability, regardless of antioxidant polarity, to inhibit lipid peroxide generation. However, the ability of lauryl gallate and TBHQ to prevent TBARS generation was elevated by mixing surfactants with small and large hydrophilic heads and by decreasing surfactant concentration. In most emulsions, lauryl gallate showed a more effective antioxidant ability than TBHQ.

Funder

Rural Development Administration

Ministry of Science and ICT, South Korea

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3