In Vitro Antioxidant Properties, Glucose-Diffusion Effects, α-Amylase Inhibitory Activity, and Antidiabetogenic Effects of C. Europaea Extracts in Experimental Animals

Author:

Ouassou Hayat,Bouhrim MohamedORCID,Bencheikh Noureddine,Addi MohamedORCID,Hano ChristopheORCID,Mekhfi Hassane,Ziyyat Abderrahim,Legssyer Abdekhaleq,Aziz Mohamed,Bnouham MohamedORCID

Abstract

Caralluma europaea (Guss.) N.E.Br. (C. europaea), is a medicinal plant used traditionally to treat diabetes mellitus (DM) in Morocco. This study aimed to investigate the in vitro antioxidant properties, glucose diffusion effects, α-amylase inhibitory activity, and pancreatic protective effects of C. europaea in experimental alloxan-induced diabetes in mice. Total phenolic contents were determined by Folin–Ciocalteu colorimetric method, total flavonoid contents were measured by aluminum chloride colorimetric assay, and tannins contents were determined by employing the vanillin method. C. europaea ethyl acetate fraction exhibited high antioxidant potential in terms of radical scavenging (DPPH) (IC50 = 0.22 ± 0.01 mg/mL), β-carotene bleaching activity (IC50 = 1.153 ± 0.07 mg/mL), and Ferric-reducing antioxidant power. Glucose diffusion was significantly inhibited by the ethyl acetate fraction at 60,120and 180 min, while the aqueous extract did not have this inhibitory effect when compared with the control group. Potent α-amylase inhibitory activity was observed in the ethyl acetate fraction and the aqueous extract in vitro and in vivo using STZ-diabetic rats. On the other hand, the administration of the ethyl acetate fraction (60 mg/kg) significantly attenuated alloxan-induced death and hyperglycemia in treated mice. Furthermore, histopathological investigations revealed that the ethyl acetate fraction protected islets of Langerhans against alloxan-induced tissue alterations. These results suggest that C. europaea exhibited an important antihyperglycemic effect via the inhibition of glucose diffusion and pancreatic α-amylase activity. In addition, the antidiabetogenic effect of C. europaea might be attributed to their polyphenol and flavonoid compounds, which could be reacted alone, or in synergy, to scavenge the free radicals produced by the alloxan.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3