Antioxidant Ascorbic Acid Modulates NLRP3 Inflammasome in LPS-G Treated Oral Stem Cells through NFκB/Caspase-1/IL-1β Pathway

Author:

Pizzicannella Jacopo,Fonticoli Luigia,Guarnieri SimoneORCID,Marconi Guya D.ORCID,Rajan Thangavelu SoundaraORCID,Trubiani OrianaORCID,Diomede FrancescaORCID

Abstract

Human gingival mesenchymal stem cells (hGMSCs) and endothelial committed hGMSCs (e-hGMSCs) have considerable potential to serve as an in vitro model to replicate the inflammation sustained by Porphyromonas gingivalis in periodontal and cardiovascular diseases. The present study aimed to investigate the effect of ascorbic acid (AA) on the inflammatory reverting action of lipopolysaccharide (LPS-G) on the cell metabolic activity, inflammation pathway and reactive oxygen species (ROS) generation in hGMSCs and e-hGMSCs. Cells were treated with LPS-G (5 μg mL−1) or AA (50 μg mL−1) and analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, immunofluorescence and Western blot methods. The rate of cell metabolic activity was decreased significantly in LPS-G-treated groups, while groups co-treated with LPS-G and AA showed a logarithmic cell metabolic activity rate similar to untreated cells. AA treatment attenuated the inflammatory effect of LPS-G by reducing the expression of TLR4/MyD88/NFκB/NLRP3/Caspase-1/IL-1β, as demonstrated by Western blot analysis and immunofluorescence acquisition. LPS-G-induced cells displayed an increase in ROS production, while AA co-treated cells showed a protective effect. In summary, our work suggests that AA attenuated LPS-G-mediated inflammation and ROS generation in hGMSCs and e-hGMSCs via suppressing the NFκB/Caspase-1/IL-1β pathway. These findings indicate that AA may be considered as a potential factor involved in the modulation of the inflammatory pathway triggered by LPS-G in an vitro cellular model.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3