Inhibition of Membrane-Associated Catalase, Extracellular ROS/RNS Signaling and Aquaporin/H2O2-Mediated Intracellular Glutathione Depletion Cooperate during Apoptosis Induction in the Human Gastric Carcinoma Cell Line MKN-45

Author:

Bauer Georg

Abstract

The human gastric carcinoma cell line MKN-45 is a prototype of bona fide tumor cells, as it is protected from the NADPH oxidase-1 (NOX-1)-driven HOCl- and nitric oxide (NO)/peroxynitrite apoptosis-inducing signaling pathways by a membrane-associated catalase. The use of inhibitors/scavengers shows that inhibition of membrane-associated catalase is sufficient for the activation of NO/peroxynitrite or HOCl signaling. However, this signaling is not sufficient for apoptosis induction, as intracellular glutathione peroxidase/glutathione counteracts these signaling effects. Therefore, intrusion of extracellular tumor cell-derived H2O2 through aquaporins is required for the full apoptosis-inducing effect of extracellular reactive oxygen/nitrogen species. This secondary step in apoptosis induction can be prevented by inhibition of aquaporins, inhibition of NOX1 and decomposition of H2O2. Pretreatment with inhibitors of glutathione synthase or the cysteine-glutamine antiporter (xC transporter) abrogate the requirement for aquaporin/H2O2-mediated glutathione depletion, thus demonstrating that intracellular glutathione is the target of intruding H2O2. These data allow definition of mechanistic interactions between ROS/RNS signaling after inhibition of membrane-associated catalase, the sensitizing effects of aquaporins/H2O2 and the counteraction of the xC transporter/glutathione synthase system. Knowledge of these mechanistic interactions is required for the understanding of selective apoptosis induction in tumor cells through reestablishment of apoptosis-inducing ROS/RNS signaling.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3