Abstract
Since SARS-CoV-2 emerged in 2019, strict monitoring of post-COVID-19 patients in order to ensure the early detection of sequelae and/or chronic organ damage that could been associated with the infection has been essential. Potential involvement of the NO pathway in the development of post-COVID-19 lung fibrotic alterations is feasible, since the majority of respiratory cells can produce NO, and fractional exhaled NO (FeNO) represents a biomarker of airway inflammation. The aim of this study was to investigate the potential utility of multiple-flow FeNO parameters in a post-COVID-19 population and to compare it with other indicators of lung damage proposed in the literature. We enrolled 20 patients hospitalized for COVID-19, who underwent clinical, respiratory functional (including PFTs and FeNO) and radiological follow-up after discharge. Compared with age- and sex-matched healthy controls, post-COVID-19 patients showed significantly higher FeNO 350 mL/s and CaNO levels. Moreover, among the parameters included in the follow-up, CaNO showed the best accuracy in indicating predominant fibrotic changes and GGO at CT scan. To our knowledge, this preliminary study has investigated for the first time multiple-flow FeNO parameters in a post-COVID-19 population. The evidence of increased CaNO values may imply the persistence of alveolar and bronchiolar inflammation and/or a mild impairment of the alveolar-capillary membrane in these patients.
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Reference37 articles.
1. Director-General’s Opening Remarks at the Media Briefing on COVID-19–11 March 2020
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
2. Acute respiratory failure in COVID-19: is it “typical” ARDS?
3. Dexamethasone in Hospitalized Patients with Covid-19;Horby;N. Engl. J. Med.,2021
4. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine
5. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献