Spermidine Induces Expression of Stress Associated Proteins (SAPs) Genes and Protects Rice Seed from Heat Stress-Induced Damage during Grain-Filling

Author:

Chen Min,Fu Yuying,Mou Qingshan,An Jianyu,Zhu Xiaobo,Ahmed Temoor,Zhang Sheng,Basit Farwa,Hu Jin,Guan YajingORCID

Abstract

Heat stress during seed maturation significantly reduced seed size and quality. Polyamines, especially spermidine (Spd), were reported to be closely related to seed development and plant heat tolerance. Stress-associated proteins (SAPs) also played a critical role in plant heat resistance, but the relationship between Spd and SAPs in improving rice tolerance to heat stress during grain filling has not been reported. Our results showed that the external spraying Spd (1.5 mM) significantly increased seed germination rate, germination index, vigor index and 1000-grain weight, significantly increased endogenous Spd, spermine (Spm) content and peroxidase activity; significantly reduced MDA content; and greatly alleviated the impact of heat stress on rice seed quality during grain filling stage as compared with high temperature control. OsSAP5 was the most upregulated expression induced by Spd, and may be mainly involved in the Spd-mediated enhancement of high-temperature resistance during rice seed development. Overexpression of OsSAP5 in Arabidopsis enhanced 1000-grain weight and seed heat resistance. Exogenous Spd alleviated the survival rate and seedling length, reduced MDA content, and upregulated the expression levels of SPDS and SPMS in Atsap4 mutant under high temperature during seed germination. In all, exogenous Spd alleviated the heat damage on seed quality during the grain filling stage and seed germination stage by improving endogenous Spd and Spm. OsSAP5, a key gene induced by Spd, might be involved in the rice heat resistance and seed quality in coordination with Spd and Spm.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Hainan Provincial Department of Science and Technology

Dabeinong Funds for Discipline Development and Talent Training in Zhejiang University

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3